skip to main content
10.1145/3531146.3533234acmotherconferencesArticle/Chapter ViewAbstractPublication PagesfacctConference Proceedingsconference-collections
research-article
Open Access

Measuring the Carbon Intensity of AI in Cloud Instances

Published:20 June 2022Publication History

ABSTRACT

The advent of cloud computing has provided people around the world with unprecedented access to computational power and enabled rapid growth in technologies such as machine learning, the computational demands of which incur a high energy cost and a commensurate carbon footprint. As a result, recent scholarship has called for better estimates of the greenhouse gas impact of AI: data scientists today do not have easy or reliable access to measurements of this information, which precludes development of actionable tactics. We argue that cloud providers presenting information about software carbon intensity to users is a fundamental stepping stone towards minimizing emissions.

In this paper, we provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions by using location-based and time-specific marginal emissions data per energy unit. We provide measurements of operational software carbon intensity for a set of modern models covering natural language processing and computer vision applications, and a wide range of model sizes, including pretraining of a 6.1 billion parameter language model. We then evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform: using cloud instances in different geographic regions, using cloud instances at different times of day, and dynamically pausing cloud instances when the marginal carbon intensity is above a certain threshold. We confirm previous results that the geographic region of the data center plays a significant role in the carbon intensity for a given cloud instance, and find that choosing an appropriate region can have the largest operational emissions reduction impact. We also present new results showing that the time of day has meaningful impact on operational software carbon intensity.Finally, we conclude with recommendations for how machine learning practitioners can use software carbon intensity information to reduce environmental impact.

References

  1. Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. 2020. Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models. arxiv:2007.03051 [cs.CY]Google ScholarGoogle Scholar
  2. Rhonda Ascierto and A Lawrence. 2020. Uptime institute global data center survey 2020. Uptime Institute 2(2020).Google ScholarGoogle Scholar
  3. Nesrine Bannour, Sahar Ghannay, Aurélie Névéol, and Anne-Laure Ligozat. 2021. Evaluating the carbon footprint of NLP methods: a survey and analysis of existing tools. In EMNLP, Workshop SustaiNLP.Google ScholarGoogle ScholarCross RefCross Ref
  4. Abeba Birhane, Pratyusha Kalluri, Dallas Card, William Agnew, Ravit Dotan, and Michelle Bao. 2021. The values encoded in machine learning research. arXiv preprint arXiv:2106.15590(2021).Google ScholarGoogle Scholar
  5. Buildcomputers.net. 2021. Power Consumption of PC Components in Watts. https://www.buildcomputers.net/power-consumption-of-pc-components.htmlGoogle ScholarGoogle Scholar
  6. Jacques A de Chalendar and Sally M Benson. 2019. Why 100% renewable energy is not enough. Joule 3, 6 (2019), 1389–1393.Google ScholarGoogle ScholarCross RefCross Ref
  7. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition. Ieee, 248–255.Google ScholarGoogle ScholarCross RefCross Ref
  8. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arxiv:1810.04805 [cs.CL]Google ScholarGoogle Scholar
  9. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929(2020).Google ScholarGoogle Scholar
  10. Jim Gao. 2014. Machine learning applications for data center optimization. (2014).Google ScholarGoogle Scholar
  11. Michael Gillenwater. 2008. Redefining RECs—Part 1: untangling attributes and offsets. Energy Policy 36, 6 (2008), 2109–2119.Google ScholarGoogle ScholarCross RefCross Ref
  12. Google. 2021. Carbon free energy for Google Cloud regions. https://cloud.google.com/sustainability/region-carbonGoogle ScholarGoogle Scholar
  13. Google. 2021. Helping you pick the greenest region for your Google Cloud resources. https://cloud.google.com/blog/topics/sustainability/pick-the-google-cloud-region-with-the-lowest-co2Google ScholarGoogle Scholar
  14. Abhishek Gupta, Camylle Lanteigne, and Sara Kingsley. 2020. SECure: A Social and Environmental Certificate for AI Systems. arXiv preprint arXiv:2006.06217(2020).Google ScholarGoogle Scholar
  15. Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S Lee, Gu-Yeon Wei, David Brooks, and Carole-Jean Wu. 2021. Chasing Carbon: The Elusive Environmental Footprint of Computing. In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 854–867.Google ScholarGoogle Scholar
  16. K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong, and X. Wang. 2018. Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.2018.00059Google ScholarGoogle ScholarCross RefCross Ref
  17. Kees Hertogh. 2021. Empowering cloud sustainability with the Microsoft Emissions Impact Dashboard. https://azure.microsoft.com/en-us/blog/empowering-cloud-sustainability-with-the-microsoft-emissions-impact-dashboard/Google ScholarGoogle Scholar
  18. Zeshan Hyder, Keng Siau, and Fiona Nah. 2019. Artificial intelligence, machine learning, and autonomous technologies in mining industry. Journal of Database Management (JDM) 30, 2 (2019), 67–79.Google ScholarGoogle ScholarCross RefCross Ref
  19. Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell, and Kurt Keutzer. 2014. Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869(2014).Google ScholarGoogle Scholar
  20. International Energy Authority (IEA). 2020. Energy Technology Perspectives 2020. https://www.iea.org/reports/energy-technology-perspectives-2020Google ScholarGoogle Scholar
  21. Lynn Kaack, Priya Donti, Emma Strubell, George Kamiya, Felix Creutzig, and David Rolnick. 2021. Aligning artificial intelligence with climate change mitigation. (2021).Google ScholarGoogle Scholar
  22. Young Geun Kim and Carole-Jean Wu. 2021. AutoFL: Enabling Heterogeneity-Aware Energy Efficient Federated Learning. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. 183–198.Google ScholarGoogle Scholar
  23. Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. 2019. Quantifying the carbon emissions of machine learning. arXiv preprint arXiv:1910.09700(2019).Google ScholarGoogle Scholar
  24. Nevena Lazic, Tyler Lu, Craig Boutilier, MK Ryu, Eehern Jay Wong, Binz Roy, and Greg Imwalle. 2018. Data center cooling using model-predictive control. (2018).Google ScholarGoogle Scholar
  25. Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.Google ScholarGoogle ScholarCross RefCross Ref
  26. Anne-Laure Ligozat, Julien Lefèvre, Aurélie Bugeau, and Jacques Combaz. 2021. Unraveling the hidden environmental impacts of AI solutions for environment. arXiv preprint arXiv:2110.11822(2021).Google ScholarGoogle Scholar
  27. Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey. 2020. Recalibrating global data center energy-use estimates. Science 367, 6481 (2020), 984–986.Google ScholarGoogle Scholar
  28. Valérie Masson-Delmotte, Panmao Zhai, Hans-Otto Pörtner, Debra Roberts, Jim Skea, Priyadarshi R Shukla, Anna Pirani, Wilfran Moufouma-Okia, Clotilde Péan, Roz Pidcock, 2018. Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1, 5(2018).Google ScholarGoogle Scholar
  29. Microsoft Azure. 2021. Azure sustainability. https://azure.microsoft.com/en-us/global-infrastructure/sustainability/#overviewGoogle ScholarGoogle Scholar
  30. Vasilii Mosin, Roberto Aguilar, Alexander Platonov, Albert Vasiliev, Alexander Kedrov, and Anton Ivanov. 2019. Remote sensing and machine learning for tree detection and classification in forestry applications. In Image and Signal Processing for Remote Sensing XXV, Vol. 11155. International Society for Optics and Photonics, 111550F.Google ScholarGoogle Scholar
  31. NeurIPS 2021 Conference. 2021. NeurIPS 2021 Paper Checklist Guidelines. https://neurips.cc/Conferences/2021/PaperInformation/PaperChecklistGoogle ScholarGoogle Scholar
  32. Vito Alexander Nordloh, Anna Roubícková, and Nick Brown. 2020. Machine Learning for Gas and Oil Exploration. arXiv preprint arXiv:2010.04186(2020).Google ScholarGoogle Scholar
  33. David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2022. The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink. TexRxiv (2022).Google ScholarGoogle Scholar
  34. David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350(2021).Google ScholarGoogle Scholar
  35. Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683(2019).Google ScholarGoogle Scholar
  36. Joeri Rogelj, Oliver Geden, Annette Cowie, and Andy Reisinger. 2021. Net-zero emissions targets are vague: three ways to fix. Nature 591(2021), 365–368.Google ScholarGoogle ScholarCross RefCross Ref
  37. Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, 2021. Multitask prompted training enables zero-shot task generalization. arXiv preprint arXiv:2110.08207(2021).Google ScholarGoogle Scholar
  38. Victor Schmidt, Kamal Goyal, Aditya Joshi, Boris Feld, Liam Conell, Nikolas Laskaris, Doug Blank, Jonathan Wilson, Sorelle Friedler, and Sasha Luccioni. 2021. CodeCarbon: Estimate and Track Carbon Emissions from Machine Learning Computing.Google ScholarGoogle Scholar
  39. Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. 2020. Green AI. Commun. ACM 63, 12 (2020), 54–63.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Amazon Web Services. 2021. Sustainability in the Cloud. https://sustainability.aboutamazon.com/environment/the-cloudGoogle ScholarGoogle Scholar
  41. Omar Shaikh, Jon Saad-Falcon, Austin P Wright, Nilaksh Das, Scott Freitas, Omar Asensio, and Duen Horng Chau. 2021. EnergyVis: Interactively Tracking and Exploring Energy Consumption for ML Models. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3411763.3451780Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and policy considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243(2019).Google ScholarGoogle Scholar
  43. Neil C Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F Manso. 2020. The computational limits of deep learning. arXiv preprint arXiv:2007.05558(2020).Google ScholarGoogle Scholar
  44. Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Kathleen Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc Le. 2022. LaMDA: Language Models for Dialog Applications. arxiv:2201.08239 [cs.CL]Google ScholarGoogle Scholar
  45. Georgina Torbet. 2019. How Much Energy Does Your PC Use? (And 8 Ways to Cut It Down). https://www.makeuseof.com/tag/much-energy-pc-use-8-ways-cut/Google ScholarGoogle Scholar
  46. United States Environmental Protection Agency. 2021. Greenhouse Gas Equivalencies Calculator. https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculatorGoogle ScholarGoogle Scholar
  47. US Department of Energy. 2021. Energy-Efficient Cooling Control Systems for Data Centers. https://www.energy.gov/eere/amo/energy-efficient-cooling-control-systems-data-centersGoogle ScholarGoogle Scholar
  48. Adina Williams, Nikita Nangia, and Samuel R Bowman. 2017. A broad-coverage challenge corpus for sentence understanding through inference. arXiv preprint arXiv:1704.05426(2017).Google ScholarGoogle Scholar
  49. Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, 2021. Sustainable ai: Environmental implications, challenges and opportunities. arXiv preprint arXiv:2111.00364(2021).Google ScholarGoogle Scholar

Index Terms

  1. Measuring the Carbon Intensity of AI in Cloud Instances
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Other conferences
              FAccT '22: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency
              June 2022
              2351 pages
              ISBN:9781450393522
              DOI:10.1145/3531146

              Copyright © 2022 Owner/Author

              This work is licensed under a Creative Commons Attribution International 4.0 License.

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 20 June 2022

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed limited

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format