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Abstract

In the December 2023 paper, BitVM: Compute Anything on Bitcoin, Robin Linus introduced a new
computing paradigm for Bitcoin, allowing the expression of Turing-complete smart contracts. The
new paradigm generated significant excitement focused on a narrow but profound purpose – the ability
to develop near trustless Rollup bridging for Bitcoin, without any changes to Bitcoin’s consensus
rules. Despite introducing the possibility of Rollup bridging, BitVM, as a general purpose system,
is not optimized for this purpose. We present BitSNARK, an optimized system for the development
of Bitcoin Rollup Bridges. BitSNARK builds on the BitVM paradigm to improve, by an order of
magnitude, program size and reduce challenge/response length. Additionally, we present Grail, an
implementation of BitSNARK, creating a practical and scalable Bitcoin Rollup Bridge.

Introduction

In the beginning, Satoshi Nakamoto created Bitcoin. Ever since debate has raged on how best to both scale
Bitcoin and introduce new functionality. The debate has remained almost unchanged in its fundamentals
since Bitcoin’s inception. At its heart is a seemingly intractable trade off between three desirable features:
scale, computational expressivity and decentralization. Improvements to one feature causes deterioration
in the other two features. Thus the debate around this trilemma has raged on, to all appearances, without
possible resolution.

In 2013, Bitcoin Core developer Gregory Maxwell, introduced a possible solution to the trilemma.
With “bleeding-edge cryptography” it would be possible to achieve the holy grail of scale, Turing-complete
programmability while still maintaining decentralization. The cutting edge cryptography described was
SNARKs and would allow the creation of special environments, in which any arbitrary program could run.
The transactions executed in such environments would create “quickly-checkable proofs” that would retain
Bitcoin security. However, at the time it was believed that introducing the ability to verify SNARKs would
require a softfork and this tantalizing solution to the trilemma has remained only a thought-experiment.

Ten years after Maxwell first presented the solution offered by SNARKs, many had come to believe that
no solution to the trilemma was practicable and that Bitcoin would forever remain with the limitations of
its genesis. Indeed, the cognitive dissonance led many in the community to make peace with the trilemma
by denying that scalability and expressive programmability were desirable at all. Despite this, the verdict
that the trilemma was unsolvable would prove premature. In 2023, Robin Linus introduced BitVM, a
new computing paradigm for Bitcoin. While BitVM introduced the possibility of running any program
on Bitcoin, its most promising revelation was the possibility to verify SNARKs, allowing the creation of
Bitcoin Rollup Bridges. These bridges would allow Bitcoin assets to be used in special environments,
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called rollups. These Rollup environments could offer both scale and the ability to compute anything.
Finally, a workable solution to the Trilemma was at hand.

However, due to the general-purpose nature of BitVM, many significant limitations have come to light
making development of a practical, production-ready bridge difficult and complex. One limitation is the
need for pregenerating, presigning and storing billions of transactions, one for each potential challenge
in a verification game. This complexity has called into question the practical applicability of BitVM for
Rollup Bridges without significant tradeoffs.

In this paper, we build on BitVM to present two innovations allowing practical Bitcoin Rollup Bridges
with minimal tradeoffs. The first innovation is BitSNARK. BitSNARK is a software library that allows
verifying SNARK proofs on the Bitcoin blockchain, by way of an interactive protocol between two or
more parties. BitSNARK, instead of a general purpose system, is an application specific system optimized
for SNARK verification. It offers an order of magnitude improvement to program size and as much as
50% reduction in challenge/response protocol length for the kind of computations required by bridges.
Further, only a single challenge type targeting equivocations is required, where BitVM requires 6 different
challenge types. Additionally, our simplified protocol increases the security, transparency and auditability
of the system.

The second innovation we introduce is Grail. Grail comprises 3 main components: (1) BitSNARK,
for the verification of SNARKs. (2) A prover system for the creation of SNARK proofs for both Bitcoin
transactions and Rollup transactions. (3) The Grail Bridge, an asset bridge that securely transfers assets
between Bitcoin mainchain (Layer 1) and Rollups (Layer 2).

BitSNARK

Several approaches have been suggested to the problem of running general purpose programs on the
Bitcoin blockchain. Due to the extremely limited nature of Bitcoin script, these approaches require either
slow and expensive on-chain computation, or vast off-chain computation. BitSNARK focuses on the most
useful use-case for this technology – zkSNARK verification – and offers a much faster and less costly
solution by implementing a highly optimized SNARK verifier designed to run on the Bitcoin blockchain
without requiring complicated general purpose computation.

In principle other algorithms can be compiled as a BitSNARK program, but the main use-case for
BitSNARK is the execution of a zkSNARK verification program pre-configured with a verification key.
The program takes as input a few hundred bytes of a SNARK proof and either accepts or rejects it based
on the calculation associated.

BitSNARK VM

BitSNARK VM is a virtual machine, emulating a simplified register-based processor with only three
instructions, natively supporting the finite field calculations required for elliptic curve pairing operations.
As a result, the verification protocol is notably simplified, needs no memory consistency checks, and
requires only two challenge scenarios: single-instruction execution error proofs and reveal-equivocation
proofs.

The VM has a limited number of 256 bit registers, each with a unique ID. Each instruction receives
register IDs, performs a single calculation and emits its result into the target register. Certain registers
can be marked as immutable, so their values cannot be modified and they can be optimized in the Bitcoin
script. The following instructions are supported:

• addmod(𝑡, 𝑎, 𝑏, 𝑚) – add the values of registers 𝑎 and 𝑏, modulo 𝑐, into register 𝑡.
• andbit(𝑡, 𝑎, 𝑏, 𝑐) – if bit 𝑏 of register 𝑎 is 1, write the value of register 𝑐 into register 𝑡, otherwise

write the value 0.
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• equal(𝑡, 𝑎, 𝑏) – if the values of registers 𝑎 and 𝑏 are equal, write 0 into register 𝑡, otherwise write 0.

Additionally, an attempt to write a value into an immutable register results in the program being
rejected if the value being written is different from the value in that register.

It can be demonstrated that these instructions are sufficient to implement a zkSNARK verifier.

Interactive Verification Protocol

BitSNARK is designed as a two-party protocol for a prover and a verifier, where the prover initiates
the execution by revealing the program’s input and its result, and the verifier can in turn dispute it if
they believe the claim is incorrect. When considering more than two operators, a two-party BitSNARK
protocol is set up for each pair of agents allowing any successful two-party challenge to block an invalid
program execution.

The protocol is organized as a series of challenge and response interactions. The prover creates a
transaction revealing the required proof as input. It also engages with the verifier via a peer-to-peer
protocol to create a set of pre-signed transactions. These transactions can be used by the two parties to
perform the steps of the protocol.

During each step, the prover cuts the program execution in half, and commits to the state of the virtual
machine at that point of incision. The verifier chooses which of the two resulting parts they believe is
false. This continues until the prover has committed to a single BitSNARK operation. This operation can
then be executed on-chain, in order to determine the winner of the protocol.

If no challenge is entered during the allowed time or if the verifier fails to demonstrate a rejection,
the funds are unlocked and the prover can make use of the funds. On the other hand, if the challenge
is successful, the funds remain securely locked until any other operator initiates the withdrawal process
on their own. The verifier is incentivized by receiving a sum from an output created beforehand by the
prover in the initiating transaction.

Each step of the interactive protocol is a time-locked transaction, such that if a party walks away, they
lose the game once that timeout has expired.

The complexity of the protocol is 𝑂 (log(𝑛)), which allows the program being executed to be very
large while efficiently scaling the number of steps, keeping them small.

Security Assumptions

While many systems rely on a majority vote in a threshold signature scheme for security, BitSNARK
promises to provide stronger security by allowing a single honest agent to prevent abuse by any or all of
the other agents.

An initiating agent is required to create a transaction containing an output with some minimum amount
of Bitcoin, which is forfeit to any verifier who successfully proves that the transaction is fraudulent. This
in turn incentivizes agents to keep track of blockchain transactions in order to find opportunities to engage
in the verification protocol. The verifier is also required to attach an output to his challenges in order to
penalize verifiers for making challenges in non-fraudulent cases.

The result of this mutual incentive scheme is that the cost of engaging in the protocol does not fall
on the user of the system; instead – it is covered by the dishonest participant. This “optimistic” approach
allows us to keep costs down to a minimum.
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Grail Bridge

The bridge is intended to allow users to transfer assets between the Bitcoin blockchain and an L2 (Layer
2) network.

To achieve this, the bridge requires agents, here called operators. Operators are responsible for
monitoring the bridge operations and assisting users with deposit and withdrawals. They are required to
constantly monitor both the Bitcoin as well as the rollup networks, and participate in the defined protocol
steps. In addition, operators are required to register and maintain an active internet endpoint to support
P2P interactions with the other operators.

A minimum of two operators are required to keep the protocol going, but any number can be supported.
Grail allows changes to the operators group: new operators can request to join or leave by following the
required steps.

Operators can lock funds on the Bitcoin side by sending them to Taproot addresses created using
BitSNARK. The funds are thereby locked in a UTXO until a SNARK proof is provided that allows them
to be retrieved. On the L2 side, the operator sends a SNARK proof to the bridge smart contract, thereby
causing the bridge to mint tokens to the operator’s wallet.

In the reverse process, an operator burns their tokens via the smart contract, thereby obtaining a
SNARK proof that allows the operator to retrieve their funds, on the Bitcoin side, from the UTXO, using
the BitSNARK protocol.

Operator Registration and Resignation

To become an operator, an agent first creates a public key identity and an exit secret, and uses the bridge’s
smart contract to register both his public key and the hash of the exit secret. Afterwards he deposits the
required stake, which gets locked as guarantee while the operator is in function.

The stake can be recovered when the operator requests to exit the protocol role, provided that no
violation has been demonstrated to that point. To claim the stake and exit the role, the operator reveals the
exit secret, which can be used in turn to forbid them from participating in any future protocol exchange.

The active group of operators maintains a multi-signature identity that is used to pre-sign transactions
and optimize operational cost on non-adversarial scenarios. The bridge uses the MuSig2 two-round
protocol to create Schnorr signatures approved by the full set of operators. In steps requiring pre-signed
transactions, the group identity is used to enforce the possible protocol state transitions. Pre-signs are
required, for example, to realize stake funding, as well as bridge deposits.

In addition, some optional optimization functions can be performed by having direct approval of the
entire operator group. For example, simplified direct withdrawals or UTXO consolidation.

Grail Bridge Deposit

In order to efficiently perform new deposits on the bridge, three smart contract functions are used to
coordinate the operations.

• Initiate deposit – A user specifies a set of funding UTXOs on the Bitcoin network, and requests
an address to make a deposit. The operators work together to generate an address, and a set of
presigned transactions.

• Confirm deposit – As soon as a set of operators have signed the required transactions, the deposit
is confirmed and the user can initiate the transfer. The user can verify that the address has been
generated correctly and that all the requisite transactions have been signed before transferring their
funds.
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• Complete deposit – Given a proof of transfer to the accepted bridge deposit address on the bitcoin
network, the equivalent amount of the rollup’s ERC20 token is transferred to the user in the rollup.
The locked UTXOs are registered in the smart contract.

None Initialized Confirmed Completed

Cancelled

Funding tx
prepared

Transfer to
deposit
address

Proof

Operators
Pre-Sign

Roll-up

Bitcoin

Figure 1

Operator-initiated Withdrawal

In an operator-initiated withdrawal operation, an operator holding tokens will exchange them for some of
the UTXOs locked on the bridge.

To complete that function, the following smart contract method is used:
• Request withdrawal

The operator requests a withdrawal and specifies an amount and target address. The smart-contract
collects the tokens equivalent, selects a group of UTXOs that adds to the amount, and assigns those
UTXOs the the operator address.
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Afterwards, when the smart-contract state has been committed to the bitcoin network, the operator
can use a zk-proof showing that the UTXOs has been assigned to him to transfer the funds in the bitcoin
network.

Coordinated withdrawal

In the event all operators are available and cooperating, an operator-initiated withdrawal can be completed
by having a group signature of the transfer to the target address, avoiding the need to calculate and commit
the zk-proof.

Operator-assisted Withdrawal

If a user requests to withdraw tokens, the operation can be completed by an operator holding Bitcoin. The
bridge smart contract helps in performing a swap, bitcoin in exchange for tokens. This helps to minimize
wait times and simplify the user experience. In exchange the operator gets a fee.

The following smart contract functions are available:
• Initiate withdrawal – the user specifies an amount and target address. The smart contract collects

the funds and registers the withdrawal request.
• Operator assignment – an operator responds and selects a set of UTXOs they control to service the

request. The withdrawal gets assigned to them. As soon as the state is confirmed, they transfer
Bitcoin to the target address using the preselected UTXOs.

• Complete withdrawal – the operator completes the operation by presenting a proof of inclusion in
the Bitcoin blockchain of the transaction to the target address. The smart contract transfers the
target amount in tokens to the operator.
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Proofs

Two types of proofs are used in the Grail bridge to support its operations: proof of transaction inclusion
on the Bitcoin network, and proof of state transition of the bridge smart contract on the L2 side.

For both types, a zkSNARK groth16 proof is generated and verified. Proof recursion is expected to
be supported, allowing proofs from other systems, such as Plony2 and STARKs.

Proof of transaction inclusion on the bitcoin network – Given a transaction hash, a proof that the
transaction has been mined on the bitcoin network is generated by combining the following conditions:

• Proof that the transaction was included in a particular block
• Proof that a predefined number of blocks were confirmed afterwards
• Proof that a known accepted block is present in the chain

Accepted
Block Block · · · Target

Block Block Block Block Block

Target TX Confirmations

Figure 4

Proof that a variable on the bridge smart contract reached a particular state – Proofs of the
bridge smart contract state are used in two cases: in order to confirm that a UTXO has been assigned to
an operator for withdrawal, or to confirm that a stake has been released after an operator has resigned.

Depending on the design and security assumptions of the rollup the proofs can be constructed as:
• A proof of transaction inclusion on the bitcoin network – provided that roll-up is committing

transaction information to the bitcoin network as a data availability layer, and that the rollup has a
dispute mechanism to reject invalid state transitions.

• A proof of storage state on the rollup’s smart contract – an alternative is to show that a target
variable with its value has been included in the smart-contract storage when calculating the rollup’s
block hash.
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Advantages of the BitSNARK Optimized System

The main distinction between BitSNARK and BitVM is its processor architecture. Where BitVM uses
a general purpose processor to allow the verification of a wide range of potential programs, BitSNARK
uses a minimalistic design specifically targeting ZK-SNARK proof verification. As a result BitSNARK
offer a simpler design with fewer components and fewer challenge scenarios required. This reduction in
complexity directly translates to the trustworthiness, auditability and security of the BitSNARK.

Platform complexity

RISC-V 32 with base integer (RV32I) and multiplication extension (RV32M) has 55 instructions. Each
instruction must be programmed in Bitcoin script in order to implement the BitVM protocol verification.
In contrast, BitSNARK only has 3 instructions: ADD, SUB and MULBIT. BitSNARK doesn’t require
and doesn’t implement any instructions for branching, conditional branching, looping or subroutine
instructions.

RV32I has 4GB of addressable RAM. BitVM consequently needs to implement memory consistency
in its protocol. BitVM does this by hashing the memory contents in each cycle and implementing a
specific multi-step challenge response game to validate this computation. Thus, BitSNARK programs
don’t require RAM, and have no RAM consistency requirement at all.

Program Types

While BitVM can verify any program compiled into a RISC-V 32 binary, BitSNARK can only run ZK-
SNARK proof verification programs. This apparent limitation can be overcome by using SNARK tools
that allow proof of general purpose programs. For example the RISC ZERO platform allows ZK-STARK
proofs of RISC-V execution, and later generating a groth16 verifier of the result.

Furthermore, for many applications, it will make more sense to have the protocol verify a SNARK
instead of the whole computation. Firstly, this can reduce the total amount of on-chain computation.
Secondly, a SNARK can significantly minimize the amount of input data required to perform the validation.
Considering data availability requirements, this could have significant cost implications in many scenarios.
One of these scenarios is bridging, for which BitSNARK optimizes.

There may be applications where directly using a general purpose platform is a preferred option to
generating a SNARK (for example if some of the calculations performed limit ZK-recursion options).

Program Verification Protocol

BitSNARK challenge response is a straightforward two phase protocol, with only 1 challenge type. In
contrast, BitVM is a more complex system, and as a result the challenge response game incorporates 6
different scenarios.
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Technical Comparison

Feature BitSNARK BitVM

Platform

Registers Variable number of 256-bit
registers

31 32-bit registers

Instructions 3
add/sub/mulbit

55
47 from base/integer + 8 from
multiplication extensions.

Random Access Memory No Yes
Needs to implement memory
consistency

Branching No Yes

Loops No Yes

Subroutines No Yes

Program

Program range Zk-snark verification program Any RISCV rv-32im program

Tool-chains Libsnark, gnark, circom
Any zk-snark generator library
targeting groth16

LLVM / GCC
Any compiler targeting rv32 bare

Challenge Protocol

Challenge types 1 6

Program loading Fixed at setup ?
Preloaded in memory. RO region

Input size Approx. 350 bytes Variable

Input signing Lamport Lamport / Winternitz

Critique of BitVM

On April 5’th, 2024, Tyler Whittle & Rijndael, published a critique of BitVM bridges: BitVM Bridges
Considered Unsafe. In the essay, the authors argued that circumstances could arise where the funds
seeking to exit the Bridge could exceed the capacity to redeem in a timely manner, causing catastrophic
loss of funds. In future publication, we plan to provide a full analysis of Whittle and Rijndael’s claims
and demonstrate how Grail avoids such a circumstance. Here, we address the claims in abbreviated form.

Contra the system described by Whittle and Rijndael, Grail provides users a consistent ability to
withdraw. This is achieved in the incentive aligned scenario (happy path) through optimistic consensus,
which allows any amount of funds within the Grail bridge to be withdrawn to one or multiple addresses
of withdrawing users. Taken to the limit, this would allow for the full amount of funds held within the
Grail bridge to be redeemed within a single transaction, regardless of the value of funds held.
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In the incentive unaligned scenario, the application of a fee-market for priority withdrawals coupled
with the ability to scale operators via dynamic membership, allows for continued smooth operation of
withdrawal. At all times, funds held in Grail are securely maintained with 1-of-n assurance. Any increase
in liquidity requirements for withdrawal is accompanied with a complimentary increase in withdrawal
fees. Operators have the ability to forward withdrawals to users making use of their own or borrowed
funds. The rise in fees for priority withdrawals provides economic incentive for additional liquidity
provision by either the existing set of operators or by attracting additional operators. Due to the fact
that funds held in the bridge remain at all times redeemable by operators, any fees earned are effectively
risk-free. The practical upshot is that Grail withdrawal fees instantiate a risk-free rate of return for Bitcoin.

Conclusion

In summary, BitSNARK and Grail build upon the monumental innovation of BitVM, forging a path toward
practical, secure, and scalable Bitcoin Rollup Bridges. By optimizing for the specific requirements
of SNARK verification, BitSNARK offers dramatically improved efficiency and reduced complexity
compared to BitVM’s general-purpose design. The Grail implementation leverages these advancements
to create a complete system for Bitcoin Rollup Bridges that upholds the security and decentralization
promises of BitVM while addressing the concerns raised by critics. Grail marks a significant step forward
in resolving Bitcoin’s long-standing scaling trilemma, paving the way for a future in which Bitcoin can
fulfill its potential as the foundation of a new financial paradigm. Let’s Build!
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